電解水制氫方面 改進催化劑 1 :開發(fā)新型催化劑,如納米催化劑、氮摻雜碳納米管等,提高電解水反應的活性,降低過電位,提升電解效率。通過摻雜技術調整催化劑電子結構,結合分子動力學模擬設計催化劑結構和組成,在提率的同時降低成本。
電解水制氫過程能耗高,被稱為電老虎,而甲醇制氫則能在相對較低的溫度和壓力下進行,減少了能源消耗。提高氫氣產率:甲醇制氫具有較高的氫氣產率。通過重整反應,甲醇可以地轉化為氫氣,使得氫氣的產量相對較高。這對于大規(guī)模應用氫氣,如氫能源汽車、分布式發(fā)電等領域具有重要意義。
能量釋放充分:氫氣的熱值較高,每單位質量的氫氣燃燒釋放的能量約為汽油的 3 倍、天然氣的 2.5 倍。在工業(yè)生產中,相同質量的氫氣和其他傳統(tǒng)燃料相比,氫氣能釋放出更多的能量,可有效提高能源的利用效率。
該工程利用焦爐煤氣中的氫氣成分,在氫基豎爐內催化裂解為一氧化碳和氫氣,實現(xiàn) “自重整”。與傳統(tǒng) “高爐 + 轉爐” 的長流程煉鋼模式相比,工藝流程環(huán)節(jié)大幅減少,碳排放量大幅下降。經測算,較企業(yè)轉型升級前,主要污染物二氧化硫、氮氧化物、煙粉塵排放分別減少 30%、70% 和 80% 以上,噸鋼碳排放降至約 0.5 噸,相較于傳統(tǒng)長流程煉鋼可減少二氧化碳排放約 70%,年可減少二氧化碳排放約 80 萬噸。
這可能需要增加管道壓力,并可能對管道材料有特殊要求。 綜上所述,氫氣輸送中的壓力并非一個固定的數值,而是根據具體的輸送需求、管道條件和安全標準來綜合確定的。在實際應用中,可能會涉及到多個壓力值的調整和選擇。
采用碳捕集與封存技術在制氫廠安裝二氧化碳捕集裝置,將產生的二氧化碳進行分離、壓縮并運輸到合適地點封存。隨著技術發(fā)展和規(guī)模效應體現(xiàn),成本有望降低,在碳排放交易體系下,還可能獲得經濟補償,提高綜合經濟性。